## The Knights' Problem: DNA Algorithms for NP-complete Problems

Recall that SAT as we usually see it is the problem of determining whether or not there exists a way to assign variables so that a Boolean formula is true. We call this a decision problem.

In the Knights' Problem paper, the Boolean formula is this:

$$
((\neg \mathrm{h} \& \neg f) \text { or } \neg \mathrm{a}) \&((\neg \mathrm{~g} \& \neg \mathrm{i}) \text { or } \neg \mathrm{b}) \&((\neg \mathrm{~d} \& \neg \mathrm{~h}) \text { or } \neg \mathrm{c}) \&((\neg \mathrm{c} \& \neg \mathrm{i}) \text { or } \neg \mathrm{d}) \&((\neg \mathrm{a} \& \neg \mathrm{~g}) \text { or } \neg \mathrm{f})
$$

1. Solve the decision problem: Is this formula satisfiable?

The Knights' Problem paper describes a DNA-based algorithm which does more than this: it figures out the variable assignments instead of simply saying True/False about whether such an assignment exists. The DNA-based algorithm solves the search problem: it searches for possibilities, and reports them.

Technical note about the definition of "search problems": An algorithm only needs to output one solution for us to say "the algorithm solves the search problem." It is not guaranteed to output all of them. The DNA-based algorithm tries for all of them; but when I say "the answer to the search version of SAT", assume that you only get to see one answer, not all of them.
2. True, false, or open: You could use the answer to the search version of SAT to find the answer to the decision version of SAT, in polynomial time.
3. True, false, or open: You could use the answer to the decision version of SAT to find the answer to the search version of SAT, in polynomial time.
4. Which would you expect to be more difficult: the search version or the decision version of SAT?

Suppose, instead, that I told you to find a valid Knights' Problem positioning of knights on the chessboard that uses the most knights. This is an optimization problem: you need to search for the "best" possibility (for some definition of "best"), and report it.
5. True, false, or open: You could use the answer to the optimization version of SAT to find the answer to the decision version of SAT, in polynomial time.
6. True, false, or open: You could use the answer to the optimization version of SAT to find the answer to the search version of SAT, in polynomial time.
7. Which of the following are currently known to be in P: search version of SAT, decision version of SAT, optimization version of SAT?
8. Which of the following are definitely in NP (think about what the polynomial-time 'proof' could be): search version of SAT, decision version of SAT, optimization version of SAT?
9. Which of the following are NP-hard: search version of SAT, decision version of SAT, optimization version of SAT?
10. If you were to arrange these three types of problems - decision, optimization, and search in order from hardest to easiest, how would you arrange them?

## Is DNA computing faster?

For a bit, let us assume that we have infinite lab space and DNA nucleotides to use. We'll focus on the time that algorithms take to run, focusing on the search version of the Knights' Problem.

If we were working on a classical computer, we could use the "brute force" algorithm to solve a Boolean formula: try all possible variable assignments until one works.

1. If the Boolean formula is length $x$, how much time does the computer algorithm take to find a satisfying solution: logarithmic, linear, polynomial, or exponential in $x$ ?
2. If the Boolean formula is length $x$, then how many lab steps does the DNA algorithm need to find a satisfying solution: logarithmic, linear, polynomial, or exponential in $x$ ?
(Assume that diffusion and reactions are infinitely fast, and that the only slow steps of the algorithm are the lab work: mixing things together, adding the enzyme, etc.)
3. Are there any problems with my assumption that diffusion and reactions are infinitely fast, when we're working with massive quantities of DNA?

## Scalability of DNA Computing

Let's think about expanding the $3 x 3$ Knights' Problem up to an $8 \times 8$ board! First, let's try to calculate the space needs of the DNA algorithm.

1. How many variables $(a, b, c, \ldots)$ do you need to represent this problem?
2. How many different DNA sequences will be in the DNA library that you need to make?
3. Assume that you need at least 30 nucleotides to represent each variable. How long (in number of nucleotides) does each DNA strand need to be, in total?
4. Combining your answers to (2) and (3), how many moles of DNA nucleotides do you need as ingredients to synthesize your DNA? There are $6.02 \times 10^{23}$ molecules in a mole.
5. On average, a DNA nucleotide weighs 330 grams per mole. How many grams of DNA do you need?
6. How does the amount of DNA that you need grow as the area of the chessboard grows: logarithmically, linearly, polynomially, or exponentially?
7. Consider, instead, a $9 \times 9$ chessboard. Would the experiment be feasible?
