Turing machines within Turing machines!

Descriptions of Turing Machines

It is possible to write down any Turing machine as a sequence of zeros and ones. This sequence describes everything about the Turing machine that we mentioned earlier – Q, A, and δ.

We call this the **description** of the Turing machine.

We abbreviate “the description of Turing machine M” as just “<M>”.

Universal Turing Machines:

Alan Turing proved the existence of a “**Universal Turing Machine**” (let's call it U). The Universal Turing Machine simulates other Turing machines.

U takes as its input the description of any Turing machine, <M>, followed by any input x. We call U the “Universal Turing Machine” because it can then simulate what M would do when M runs on the input x. U(<M>, x) produces exactly the same output as M(x).

U(<M>, x) = M(x)

The Halting Problem: when Turingception goes wrong

Remember how Turing machines can sometimes loop. Wouldn't it be cool if we had a program which can look at our programs and see if they have infinite loops? This is called the Halting Problem. **HALT** is the language of all Turing machines + inputs that halt.

Suppose we have a program which can do this. Let's call it P.

\[
P(<M>, x) = \begin{cases}
accept & \text{if } M(x) \text{ halts} \\
reject & \text{if } M(x) \text{ loops}
\end{cases}
\]

It turns out that P cannot exist. The reason for this is again devious. We set up a program Q which contains a description of P, and uses that to do the exact opposite of whatever P predicts Q does:

\[
Q(x) = \begin{cases}
loop & \text{if } P(<Q>, x) \text{ accepts} \\
halt & \text{if } P(<Q>, x) \text{ rejects}
\end{cases}
\]

Q is something that P analyzes incorrectly, so P cannot exist.

There is no Turing machine that can decide **HALT**! The Halting Problem is **undecidable**.
Scooping the Loop-Snooper
A proof that the Halting Problem is undecidable
Geoffrey K. Pullum

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called \(P \)
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and \(P \) gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then \(P \) prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then \(P \) reports ‘Bad!’ — which means you’re in the soup.

Well, the truth is that \(P \) cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use — and it’s simple to do.
I’ll define a procedure, which I will call \(Q \),
that will use \(P \)’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say \(A \), one supplies,
the first step of this program called \(Q \) I devise
is to find out from \(P \) what’s the right thing to say
of the looping behavior of \(A \) run on \(A \).

Step 1: \(P \)

I can predict
whether a program
will halt or loop!

Step 2: \(Q \)

Hey, \(P \), Does
this program
halt or loop?

"Halt"

Step 3: ???

Step 4: Profit

TROLOLOL

If \(P \)’s answer is ‘Bad!’, \(Q \) will suddenly stop.
But otherwise, \(Q \) will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called \(Q \) wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of \(Q \) run on \(Q \)?

If \(P \) warns of infinite loops, \(Q \) will quit;
yet \(P \) is supposed to speak truly of it!
And if \(Q \)’s going to quit, then \(P \) should say ‘Good.’
Which makes \(Q \) start to loop! (\(P \) denied that it would.)

No matter how \(P \) might perform, \(Q \) will scoop it:
\(Q \) uses \(P \)’s output to make \(P \) look stupid.
Whatever \(P \) says, it cannot predict \(Q \).
\(P \) is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be —
and simply by using your putative \(P \).
When you posited \(P \) you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical \(P \).

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!